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PRINCIPLES OF INTERPOLATOR
DESIGN AND EVALUATION

1. INTRODUCTION AND BACKGROUND

This report develops a general mathematical method for evaluating and optimizing any local
interpolator that operates on equally spaced sample points. The performance metric is total squared error,
for which a formula is derived that depends only on the underlying signal power spectrum, the
interpolator tap weights, and the shift of the interpolation points. The method is used to evaluate standard
interpolators, and it reveals previously unknown properties. For example: some interpolators perform
better at large shifts than at small; also, the much maligned truncated SINC functions perform almost
flawlessly at certain frequencies and are, furthermore, optimal for flat inband signal spectra.

The error formula also allows the design of interpolators that are optimal in a variety of contexts,
examples of which are presented. These include perfect reproduction of selected frequencies;
low-frequency optimum; hybrid combinations; and absolute error minimization for selected spectra.

An important application of interpolation is in the registration of image pairs, a process that is usually
implemented in two steps. The first is the estimation of the relative shift or local distortion. Scene-based
algorithms for this step have been developed [1] that can be accurate to better than one hundredth of a
sample, depending on image statistics. Greater accuracy can be provided in some applications by direct
measurement of the displacement. Residual registration error after using these displacement estimates is
often dominated by inaccuracy in the second component of registration, the resampling of one of the
images, which is internolation at a discrete set of shifted points.

For remote sensing applications, registration "plays a crucial role in the correction of raw satellite
image data" [2] collected by multiple sensors or at different times. The importance of algorithmic
methods of image alignment then lies in the relaxation of optical/mechanical alignment tolerances [3],
which is a vital cost/risk factor for satellite-based systems.

"In medical imaging, applications involving image registration are expanding rapidly: ... computed
tomography, single-photon-emission computed tomography, positron-emission tomography, magnetic
resonance imaging, nuclear medicine, ultrasound, and thermography" [4]. In digital subtraction
angiography, images are compared before and after injection of X-ray absorbing elements, and patient
or organ motion causes relative translation and rotation between successive images, which then require
registration and resampling for comparison [5]. Improvements in the quality of such images can allow
"reduction of injected contrast agents or X-ray doses" f6]. Here the term "resampling" means
interpolation at points located at a fixed shift s from neighboring samples, rather than at the continuum
of such points. This distinction is maintained in the analysis that begins in Section 2.

Manuscript approved August 7, 1991.
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The detection of changes in a pair of images is also the basis for monitoring geologic, agricultural,
and oceanic evolution in ecological and planetary studies. In military applications, autonomous
surveillance and search and track systems often base the detecion of moving targets on digital background
subtraction followed by thresholding. The accuracy of all the above applications ultimately can hinge on
the fidelity of the interpolator.

Interpolation is also required for general-purpose digital image processing, for motion generation,
to scale images for display purposes, and to correct for slant aspects. It also has many traditional signal
processing applications: speech processing, frequency multiplexing of single sideband systems, digital
beamforming t7], time delay estimation, and data compression.

Progress in interpolator design can be traced to me former use of a suboptimal polynomial
interpolator called Cubic Convolution [8] to reconstruct Landsat digital imagery [9]. This method was
shown I 10] to be a special instance of a class of four-point interpolators that was named Parametric Cubic
Convolution (PCC), and the optimal value of the relevant parameter aX was found to differ from that in

Y~~~~~~~- _ L _A4 -1t; n s ,A A__ A_f __ r _ n13- n t.r_. AA A. - & a. Ayupulai use. Tile mecani-ng VJL UI1J4UILy UiwsVuu Un tULLAL-. Ln act. IUV V4flU1i t)l U Wcac tVUIuu Ua

minimized a particular error measure:

(a) in an image-independent sense, and
(K\ "% heIn " fhr sn aridtrarn hivt lrnrnun nninar Cnaar-tnim nftha c si; 'l tci ha ric-Arnn1 i

For (a), image energy was assumed to be concentrated at low spatial frequencies. All members of
PCC have perfect dc (P = 0) responses, and a was selected to enhance this low-frequency behavior by
reruhirin the P-rrnr menwn-ire to he a maximallv fist ffntion of *ennPnnv nea de 'Thk low-9f<teencv
optimal choice of parameter value (a -1/2) supplanted the original choice (a = -1), and eventually
the name Cubic Convolution (CC) came to refer to PCC with the new choice of a. Here, we also use
CC to mean PCC with a = -12.

The error measure used in Ref. 10 is shown in Section 5 to be an average resampling error over all
possible shifts of the resampling point. This is a reasonable measure for the interpolation problem, i.e.,
the construction of a dense set of resampled points. However, here we show how to find and minimize
the error for anv eiven value of the shift s. which is the distance of the resamDled points from the nearest
samples. We show further that the minimum-error four-point resampler in the sense of (a) above is indeed
a cubic convolution, but it is not a member of PCC.

The function defined on the continuum by resampling an arbitrary signal at all shifts is called the
interpolated function. The class of PCC interpolators was defined in part by constraining the interpolated
function's values and first derivatives to be continuous. The imagery resulting from use of PCC to
construct a continuum of resampled points has no steps or kinks. The interpolation function is smooth
in the mathematical sense. Because of these constraints and the limited class of cubic interpolators allowed
by even the bill range of values of a, PCC is actually only a subclass of interpolators: Smooth Cubic
Convolutions.

The optimal solution in the image-independent sense, above, for any fixed number N of sampling
points is here called LF-N, for Low-Frequency optimal. The LF-N solutions generally can produce
discontinuous first derivatives in interpolated imagery; when N is odd the functional values may be
discontinuous as well. LF-N is smooth only in the limit N - co.

When optimized in the absolute sense, PCC results in spectrum-dependent values of a, but the result
is, of course, always a cubic interpolator. However, the absolutely optimal, i.e., minimum error, solution
is not a polynomial type; this is described later.

2
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2. STANDARD INTERPOLATORS

Here the philosophy of Parker et al. [5] and others is adopted, in which resampling is treated as a
two-step process (Fig. I):

* interpolation to form a function defined on the continuum, followed by
* sampling the new function at whatever shift s is desired.

fin -I) tin) fj(x)
A A f~n'1I) (xAp

to T~~11 t +
I I II

(a)

--* Kr- S

rId Ifi (X) A g -

I I I
I 1 . I

(b)

filn- I as) fiends)
t 4, f IJn+ I +s)

I I +
I I I
I I I

(c) (d)

Fig. 1 - (a) Discrete set of sampled values from a continuous image; (b) interpolation, based on the sampled values,
fonning a continuous image; (c) sampling the interpolated image at a shift s to form: (d) a new set of resampled values

LettingJtx) represent the underlying image intensity at position x, the sampled values off, An) (n an
integer), are used to produce an interpolation estimate A off.

J(x) = . r' x - )/n). (1)
n

The kernel r defines the method of interpolation. The treatment here is in one dimension.
Two-dimensional interpolation can be accomplished by a sequence of two one-dimensional operations.

Because the sampling grid is defined here to have unit spacing, the Nyquist frequency is PNyq = 1/2
cycles/sample. If the Fourier transform of f has no components with frequency v Ž 112, f is called
"oversampled." According to the Nyquist Reconstruction Theorem, the kernel

r(x) = SINC (x) sin (OM) (2)

may be used in Eq. (1) to reproducef exactly, that isA = f, wheneverf is oversampled.

In practice, r must be of finite support (the range of x over which r is nonzero) to make Eq. (1)
contain only a finite number of terms. For example, the SINC function may be truncated at +N/2. We
call such an interpolator SINC-N. Two other common interpolators are nearest neighbor (NN) and linear
(LIN). Figure 2 illustrates r(x) for NN, LIN, and SINC. The supports for NN and LIN are 1 and 2,
respectively. The SINC has infinite support, but when truncated at +N/2 to SINC-N, its support becomes
N. Table 1 lists the corresponding analytic forms for r.

3
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-3 ?-t -1 D 1 2 3

SAMPLES

Fig. 2 - Interpolation kernels for Nearest Neighbor, Lincar, DFT-4,
and SINC, with supports 1, 2, 4, and w, respectively

Table 1 - Common Interpolators (r, P are 0 where not specified)

Interpolator f r4x) P 

SlNC (jxj < ) sin (rx) 1 for lvPI c 1/2

tX

NN ({xl C 1/2) 1 sine (v)

LlN (jx C 1) 1 - jxj sinc2(P)

DFT-N
(ixj C N12)

sin (wrx) 

(N odd) Nsin t i sine (Nv -k)

sin (7rx) * N1

(N even) N tanrx ) sinc(NP-k)

+ 2(sin[ N v - ) - sine ( 2v I I

jxC < (a+ 2)1x - (a + 3)1jx2 - I (I 3 2 lsin( - sine 2p]
I cx~ <1c 2 cc (ax13 - 5lXi2 + 8[xI - 4)

+ 2a2 (3 sinc 2 (2v) - 2 sine (2v)J - sine (4v)

These forms for DFT-N first appeared in Ref. I.

At
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Another interpolator whose performance has been studied with methods of experimental mathematics
[12] is based on the discrete Fourier transform (DFI). The method is inspired by the Fourier-shift
theorem. The idea is to compute the DFT, perhaps using modern fast Fourier transform algorithms, and
then shift the phases of this finite, discrete transform as if it were the continuous Fourier transform. lne
result is then Fourier-inverted to produce a grid of resampled values. Figure 2 also illustrates DFT4,
which interpolates with four points. Table 1 lists the particularly simple analytic forms of the DFT
kernels.

3. THE STANDARD DESCRIPTION OF INTERPOLATORS

The two most common ways of designing interpolators are to require similarity between:

= - -u-l kL 1.W Tr. U. WI U- 5u w tus jw pts .ni.oipatt; (o uvtaa...pa - Iuz-Avu ,
and

* the Fourier transforms of r and SINC.

As an example of the first design method, the class PCC was defined not only by constraining r to
be smooth like the SINC, but also by requiring r(x) to agree with SINC(x) at all integral x. Also, the
original cubic convolution interpolator corresponds to the parametric value a = -1 in PCC; this choice
equates the derivative of the kernel r(x) to that of SINC at x = ±1. Other parametric choices can also
bk ..unAaers A +1-..rugl o-u.I; -.erat.ne 1i r-n nprce. D3f(P fur sevrraOl valae
UV' uuuL1awtiVU MZU~IU5L 0~ 1 "CLLLU .taJL A" L%.~ Op~.£ 

8
1 &~%Jjl .C A %. .*'j* C% I.' 15£

of the parameter a to SINC, the ideal interpolator. The closeness of the a = -1 curve to the SINC in
the range Ix I S 1 may explain the early preference for this parametric choice. Table 1 includes the
analytic forms for PCC [10].

Analogous comparisons in Fourier space are often made between practical interpolators and the
theoretical ideal. We use ""' to denote a Fourier transform, for example,

rv) e -'vr(x)dx (a - 27rv). (3)

The transforms of the Fig. 2 interpolators are listed in Table I and plotted in Fig. 4 for |I P |5 3.
Among the examples shown, the transform of the SINC is the only one of truly finite frequency support,
with unit value inband (I vI < 1/2) and zero in the sidebands (I ' I > 1/2).

Interpolator design is often based on metrics associated with P, such as inband cutoff, inband-to-
sideband energy ratio, or weighted deviations (ripple) from the ideal SINC transform over some
frequency range of interest. These approaches are rooted in an analogy with linear systems theory. Notice
that the Fourier transform of Pa (1 I may he written aR

()= Y fn)e J1?fl(P). (4)

Therefore, At x F, which is the usual relationship between a linear filter and its output. However,
the analogy is not complete because 1J is not also proportional to i, the input to the filter. This can be
traced to the sampling process, which introduces sideband structure and, in combination with
interpolation, causes aliasing effects even if f is oversampled. Consequently, the relationship between

.tnrdfrouientw-4ornmAn fbrlpliw mpnnp ~ ntirt 1tro~vvq V^rastandardl f ..qen.yio ain fi ..i/ -stres of;P and in~terpsolator accuracy is often obscure. For
example, if fx) = el"g", then Eq. (4) becomes:

1j(v) = e 'O' e i(0,-W)np() = e 6(v - vo - n)P(v), (5)
11 Fl
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Fig 3 - Kernels for Parametric Cubic Convolution (PCC) compared to SINC
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with 6 the Dirac delta function. (The last equality is justified in the next section.) Therefore, if r is to
perfectly interpolate a sinusoid of frequency vo (= /012r) (i.e., if.?, =1 = ( - v0)), then Eq. (5)
requires that

SQv - vO) = B( - vo -n)(v) = r 6(v - Po - nAvO0 n). (6)
n n

From this, it follows that

(VO + n) = bo, (7)

with 8, the Kronecker delta. Therefore, interpolation with zero error at frequency '0 implies sideband
as well as inband constraints on P.

Furthermore, Eq. (7) implies that if r is designed to interpolate a sideband vo perfectly, then P does
not agree with the SINC transform at v0, which has the value zero. This reflects the failure of the Nyquist
reconrtuction formula in the didehandR We show in Section 6 that kernels of finite surpport are often
better than the SINC kernels in reproducing sideband signals.

All the interpolators of Fig. 4 satisfy Eq. (7) for Po = 0, meaning that a constant signal is
interpolated perfectly. The transform of DFT-4, being the sum of regularly spaced SINC functions (see
Table 1), satisfies Eq. (7) also for vP = 1/4. Generally, DFT-N perfectly interpolates N/2 frequencies
spaced at intervals U/N and starting at dc, provided that v0 = 0 (dc) and vo = 1/2 (Nyquist) are each
counted as "half' a frequency. For Po • 0, 1/2 + n (n is an integer), sin (aix) and cos (cox) can be
reconstructed, in principle, from their sampled versions. But for vo = 0, only the cosine component can
be present, and for P. = 1/2 + n, the sampling process cannot detect any sine component (sin (2ir(1/2

+ n)x) = 0 fur integer sample values x), which therefore cannot be reconstructed by any interpolator.
Summarizing, DFT-4 perfectly interpolates any phase of sinusoids with frequencies Po = 0, 1/4, as well
as the cosine component of v0 = 1/2.

As another example, DFT-5 interpolates v0 = 0, 1/5, and 2/5 sinusoids perfectly. Section 7 shows
that N-point interpolators can be constructed that perfectly reproduce an arbitrary linear combination of
N/2 particular frequencies, with the above '0 = 0, (1/2 + n) counting convention. The DFTs are thus
a poa.'ticular subclass of uiese ILerCIJUoLaLurs.

At frequencies that are not perfectly reproduced, the performance of DFT-4 or any other interpolator
is not easily understood in terms of i(v). Note that this transform depends on r(x) at all x, although the
squared error at shifts s,

d' = [fir n + s) -fin + s)]2, (8)
n

can depend on the interpolator kernel through only the specific tap weights {r(s +n)). This is because
the same is true for the sequence Ui(n + s)} (see Eq. (1)), which constitutes the resampled function.

Section 4 shows how to exploit this fact. A formula for d42 is derived that depends explicitly on the
kernel r through only the relevant tap weights, rather than through P(v). The formula provides a superior
description of performance because in most applications only two to six tap weights are used, so that only
a finite number of terms need to be computed to evaluate the error 4. On the other hand, when
expressed in frequency space, the error depends on an infinite number of values of the function P which
is, furthermore, often difficuit to compute analytically.

7
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4. DERIVATION OF THE ERROR FORMULA

This section proves a fundamental theorem on the accuracy of any local interpolator. It also derives
a formula for the efror as a function of image power spectrum and kernel tap weights, r(s + n). Several
preliminary results are required, including a generalization of Parseval's Teorem.

A lemma central to the method used here is proved in the Appendix:

comb(x) n* comb(f). 19

The correspondence ** relates a function to its Fourier transform. The comb function is defined by

comb(x) = - n), (10a)

W GUrAe tV la Uir i.Lat.A4UL4L4 LUlIl"Ull. 4L;jqualfll I7? aaya UIGI ULUg W-W t ISa UWM £audeLt tasfltu. i kuOs

the transform of Eq. (IOa)

comb(v) = e- 2"' (l1b)

gives the relation used in Eq. (5).

Other cnrresnonnden--ne-s fnr arhitrarv fimnctionn g and h are: the Fnurier hift theorem

g(x + s) e2""g(v) (11)

and the convolution theorem

gxShpx) i* (W * t(12)

(g * h)(x) Z *(vi(

'The ,-finitinn-, of ecOnvoltinn and of the omb (Inh MA flafl) mny he u s-A to nrnve p

2 g(x n)hn) = c* (omb h)(x). (13a)

A special case of Eq. (13a) is also useful:

E g(x - n) = (g * comb)(x). (13b)
n

These relations can be used to express a discrete sum of squared sample values of a function g in
terms of its Fourier transform g. Letting g - g2j x - 0 in Eq. (13b), we can write

r gn) = (g2 *comb)(O). (14)
n

8
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Letting .rdenote the Fourier transform operator, we successively apply Eqs. (12) and (9), the definition
of .7', and Eq. (12) again to simplify Eq. (14) further:

g2(n) = [r-d(Y(g 2 * comb))](O) = [.9r-I(_g 2 ) comb)](O)
" ~~~~~~~~~~~~~~~~~~~~~(15)

- f dv'[3g2 )(v') comb(v'] [ ! dv'[ * Si") comb(V').
J J

Next, the frequency-space version of Eq. (10a) is used in Eq. (15), together with the definition of
convolution:

g2(n) = £ f d'b(v - n) J dv§(vl - )g(v)
(16)

- r J dpg(n - v)g(p).
'J

If g is real, then

()=C(-v) VP,

and so from Eq. (16),

E g2 (n) = E j dvg'( - n)§(V). (18)

If, furthermore, the sequence g(n) represents an oversampled version of g, so that §Q') 0 for PI
C lJL, LI. Eq. I 10) sinpliitic Lo

r g2 (n) = J dVIg(v)j 2 (19)

which is closely related to Parseval's Theorem. Note this distinction, however: in Eq. (19), g is the
Fourier transform of the underlying continuous function g, not of the discrete Fourier series fg(n)}. These
two transforms are equal if g is oversampled, but even if it is not, Eq. (19), which we will call the
gener5CJi4LU raisevai's T IeCUrLU, bUl LoIUs Lu arU avCeage seede ucrmibueu UbeloW.

Equation (19) implies the surprising fact that as long as g is oversampled, Sg2(n) is independent of
where the sampling grid is laid down relative to the image. Shifting the grid by an amount t in one
directinn is enUivsalent tn difting uhr) in the nther:

i ) - g(x + t). (20)
Arenrtlincr to rPn (1 1N in PRntr;r eflAP Fn flfl)) Is aninhnalnt to

g(v) - g9()e2r"1 , (21)

UUUw4 WII td11II5nflej. XI 17J is Iinva-lant. PecaLuse uIe value Uo E4J. (LYJ IUsUCpCuUnLUo gIu pzaccment,

we call it the strong form of the generalized Parseval's Theorem. When g is not oversampled, a weaker
version of Eq. (19), described below, still holds.

9
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Under the transation of the function g by the amount s E 10,11, according to Eq. (21, Eq. (18)
becomes

r gt (n) eTl J dvg1v - n)XQ). (22)

wflI~fig ^ai.a taw kres=!t~ iJJ. art-Lm tfl. \.LJ 14 4. nI = ' ia i k'27). A. IN, WV W~L itH UL tLa
generalized Parseval's theorem is also expressed by Eq. (19), if the left-hand side is understood to be
averaged over all placements of the sampling grid.

n our app I~caton of Eq. m( ) i-s 4,4 whic a -*- of1 I'C 

over t amounts to an average over grid translations; thus it is appropriate whenever the imagery of
interest contains no preferred features relative to the sampling grid, which is the usual practical cae.

To identify e with the internolation nroblenm we let

gX) =fX + s) -Ax + S) (23)

Then Fn IQR nlnwt the iAntisn rattnn

4 = E g2(n. (24)
n

If the sampling grid were dense enough that {g(n)) represented an oversampling of g, then Eq. (18)
would become Eq. (19), so that

, j dv j gj (25)

in which, from Eqs. (23) and (11),

gtv) = (J,(v) - ](j,)]eottf. (26)

Equation (25) also has strong and weak versions. If, for example, g is oversampled, then Eq. (25)
is exact1 without any averaging over grid translations Unfortunatelv for the internolation nprblem. f.
and hence g is almost never bandlimited. Therefore, g cannot be oversampled, even if f is. So the
condition under which Eq. (25) has been shown to hold in the strong sense is not usually sati ed when
g is given by Eq. (23).

Nevertheless, when Eq. (23) defines g, Eq. (25) is still exact wheneverf is oversampled, even if g
is not.

Using Ea. (13a) in Eq. (1) with h = f and g = r. taking the transform. and aDplying EQ. (11) and
Eq. (12) results in:

(sO = P(v)[comb *7](4 (27)

which is usually not bandlimited because neither factor is, as shown below. Consequently, g in Eq. (26)
is usually not bandlimited.

10
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The frequency version of Eq. (13b) allows Eq. (27) to be rewritten as

Am = f(P) S 10' - m). (28)
in

The second factor is nonzero for arbitrarily large a, as is the first whenever the kernel r is of finite
support, i.e., for all practical interpolators. Consequendy,f, is not bandlimited, as claimed.

Nevertheless, using Eq. (18) together with Eqs. (26) and (28) results in

F g2(n) = S J dvP'P - n) ( flv - n - m) -fly - n] X
n n m (29)

e2im[f(v) Y V -J) -AV)],

which we now show to be independent of grid placement as long as f is oversampled.

Assuming then that

_7(v) = 0 for vIp > , (30)

we examine the most complicated cross term of Eq. (29):

r e2TiSS f dvp'(v - n) r 7-*( - n - m)P(v) x f(7 - J) (31)
n in J

Because of Eq. (30), the integration in Eq. (31) kills all summand terms except when n + m = j. So Eq.
(31) becomes

2 e27in J dp*(v - n) 2 7(P - n - m)P(v')(v - n - m). (32)
n1 m

Changing variables, v - P + n + m, in Eq. (32) produces

J dPL(P)12{I ez2tmp(v + in)P%$v + n + m)}- (33)
n'm

Each of the other cross terms of Eq. (29) produces a result similar to that of Eq. (33), but with a simpler
expression within the braces. The final result

d J Li(v)I2e'(v)dv, (34)

with

e, (P) = e2 rns{- ( - tn) - f(v + n) + E f*(v + m)f(V + n + m)} (35)
n mI

11
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is manifestly independent of grid placement. The quantity V(n) I24(y) is called the error spectrum. The
error factor e,(v) depends only on the interpolating kernel, not on the image being interpolated. Equation
(35) may be expressed more simply as

e4(P) JE/ 2, (36)

With

E,(a) j e2w'PEe + )] 1 (37)

a "complex error" factor.

Sumunarizing, for any fixed shift s, the interpolation error is independent of an oversampied image's
location relative to the sampling grid. Furthermore, the error is linear in the power spectum. Power
spectrum here simply means the squared modulus of the Fourier transiorm, It is not necessary to assume
that (Ax)) describes a stationary stochastic process, when the power spectrum equals the Fourier

+_;A~- _&AApk A- ' AMIA ^1A- _&0 S. As__{ PI A U A - --- _-- Al-- _C _6 _ _
UGLMtLULXU Ui tUg autut tiiuu lUklltVLUl. D9UtdtZUU IJ w&uIa I-gaiuicUNS UL W1 bRtCUWUd tULCLV OU

f. including deterministic.

Notice that if s is a random variable that can be described only probabilistically, then the Fourier
series in Eq. (35) can be used to express the moments of the error, which is also a random variable,
because all the s dependence is contained in the first factor. For example, in the interpolation (as opposed
to the resampling) problem, for which s may be considered uniformly distributed on 0, 1, the mean value
of the error is just the n = O term of Eq. (35).

Also note that iff is undersamipled, then Eq. (34) is still true in the average sense discussed earlier.
TMe proof is similar to that used for the above weak form of the generalized Parseval's theorem. That
is, the mean of d over all grid placements depends only on the power spectrum off and the error factor
(Eq. (35)).

At this point, the dependence of the interpolation error on the image power spectrum has been
isolated in Eq. (34), but the error factor remains expressed as an infinite sum over sidebands in Eq. (36)

and (37). The appearance of P(v) in Eq. (37) (and hence in Eq. (34)) at only the sideband frequencies
fT,+ rA C vWnzntnyrmad; nCF thA fclrt 06iat A

2
r-n rlan"inA ont k ltra nnlnnv rS rfA nnhF tla

4"side shifts" (x = s + t). This latter fact means that as long as the values r(s + n) are kept fixed, r(x)
for other x can be changed quite arbitrarily without changing the value of d, despite the attendant
changes in 7%. This invariance is not obvious from Eq. (37) which is, moreover, impractical because
rpnlihcti intprnn1ntnre hsve i;nfinitPeirninty s.eiinnnn frnncPnITntJV t tha'i n-Vt Ino4AIl CtPn it I Prnraie

Es,) in terms of r instead of P. We can expect to produce an expression containing ondy a finite number
of terms whenever r is of finite support.

The first term of Eq. (37) may be written as

£ e2 ""'4 *t) = n e2'"5 J rxQe -211X' (38)

The real-snace version of Eu. (13b) toeether with Eu. M~al then nermits Ea. (38) to be rewritten as

J r(x)e comb4s - x)dx = e 42r11 $")r,(s n). (39)

Therefore,

Er(v) r e iW +flI)4s + n)] - 1(40)

whichis the analog of Eq. (37) in terms of r instead of 7.

12
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When expressed in real quantities only, Eqs. (36) and (40) become

e2(P) = 1 - 2 cos (cin + sl)r(n + s) + S cos (wm) r r(n + m + s)r(n + sX, (41)
n mn S

which is the analog of Eq. (35).

Equations (40) and (36), together with the strong and weak interpretations of Eq. (34) permit the
evaluation of any interpolator at shift s in terms of a finite number of kernel values whenever r has finite
support. Should P have finite support, Eq. (37) plays a similar role to that of Eq. (40).

S. RELATION TO PRIOR WORK

The papers by Park and Schowengerdt [9,10] are seminal to this work. They considered an error
measure

2 =| %(X) --tx)]2dx. (42)

Notice from Eq. (8) that

d2 - <4>, (43a)

where c > denotes a mean value over an assumed uniformly distributed random shift s: 0 - 1. The
error d2 is thus appropriate when a (quasi) continuum of resampled values is of interest as, for example,
in some image display applications.

Park and Schowengerdt [101 also derived an error factor e2(k) that can be interpreted similarly as the
mean value of the error factor defined in this report. That is,

e2(v)= -e(v)>. (43b)

The mean value of the fundamental equation (Eq. (34)) is

d2 =| v) 12e2(v)da, (44)

and the mean value of the error (En { (41 Y) can he written aq

e2(v) = 1 - 2P(v) + E cos (cim)(r * r)(m), (45)

in which r is assumed to be symmetric (as in Ref. 10). Equation (45) can be called the fundamental
formula of Ref. 10. It is accompanied by a fundamental theorem, namely the fundamental theorem that
was derived in this report, but with the substitutions

2 2 -W2(6el(v) - e2 (v) and d. _ d2 (46)
in Eq. (34).

This theorem was less surprising in Ref. 10 than it is here, because there it was shown to hold only
in the above sense of an average over the shift s of the two sampling grids relative to each other. This
should be distinguished from the grid placement averaging considered in the weak versions of the
theorems discussed previously. That operation held the shift of one grid relative to the other fixed at the
value s; the pair of grids was shifted as a unit relative to the image, or vice versa.

13
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Also, in applications for which some performance criterion is defined in terms of d2 or e~a'), Eq.
(45) is normally useful only if an ansatz is first used for r (and, hence, also for P). For example, 2 en
be minimized for a given power spectrum, or e-2a) can be set to zero at selected frequencies for some
class of interpolators defined by the ansatz. In Ref. 10, the ansatz is PCC (Table 1). This allows the
parametric calculations of i and r * r which can then be inserted into Eq. (45), to be followed by the
selection of that parameter at which minimizes d2.

fn 4.o nthnr homn .Mon Vtn IAlj us -.A t-,. n n *-- r* .. -*In .-. 4.
equations depend on the N kernel values {r(s + n)}, not on the transform of r or its self-convolution.
Typically, this results in algebraic equations for these tap weights for any shift s, permitting the
calculation of optimal kernels, rather than kernels that are optimal only in an averaged sense, and that
are rnns-tr,9inePA hv tnme antt7, A,, nnted enrlier in 211 nintimnltu rfnntctq e-nniddreP in pf. In the

solutions for PCC are suboptimal because of the smoothness constraint defiing the PCC ansatz. Notice
from Table I that r for PCC is continuous, as is its first derivative, for all values of ca.

6. PERFORMANCE EVALUATIONS

Examples

Figure 5(a) plots the error factors for some common interpolators at a .25 sample shift. The
frequency 0.5 cycles/sample is the Nyquist frequency, above which no energy is present in an
oversamnpled image. Generally at low frequencies e, varies as 9Z for Nearest Neighbor, 4 for Linear,
A for CC ("Cubic Convolution," i.e., PCC with a = -1/2) and a' for DFT-N interpolators. The small
errors near dc are typical of polynomial methods. N-point interpolators that are designed optimally in this
low-frequency region, called LF-N, have squared errors that vary as 9'1. Nearest Neighbor interpolation
is the same as LF-1, and UN is LF-2. However, as noted earlier, CC is not LF-4, for which 4en is
smaller at low frequencies, varying as vs.

n l1 0'
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0 2 0.4 0.6
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Fig. 5(a) - Performance of standard interpolators (shift = .25 samples)
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Fig. 5(b) - Performance of standard interpolators (shift = .50 samples)
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Fig. 5(c) - Performance of standard interpolators (DFT-4 at three shifts)
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By contrast, a DFI interpolator of any order usually has a low-v error that varies like 2, the same
as for NN. An exception occurs at s = 1/2 (Fig. 5(b)) at which e4 g(s) improves for DFT at low
frequencies, varying as P4 , like IAN, Associated with this fact is the unusual property of DFIT
interpolators that they may perform better at the normally most stressing shift, s = 112, than at lower
shifts. Figure 5(c) compares the performance of DFT-4 at three shifts. The plots show that, when applied
to imagery with predominant energies below approximately .15 cycles/sample, DFT-4 errors actually
increase as the shift decreases from .5 to .3 samples.

IS Interpolators

Energy in imagery is usually concentrated at low spatial frequencies, and the LF interpolators are
designed to work well generally for image-like spectra. For LF-N, the error factor is constrained to be
zero at dc, and the remaining degrees of design freedom, the number of which is determined by N, are
used to make zero at P = 0 as many derivatives of the error as possible. This can be accomplished easily
by requiring the complex error (Eq. (40)) to have zero derivatives. However, it is convenient first to
multiply E2Q') by a phase factor e't Because of Eq. (36), this leaves unchanged the physically
meaningful real error factor e(r). Consequently, we can modify Ely) of Eq. (40) to:

-S £ " e~e r(S + n) - e (47)

The kth derivative of Eq. (47) at o .= 0 is to be zero, meaning that

S (-nr@ * n) = S. (48)

It is clear from Eq. (1) that Eq. (48) requires r to be the interpolator that perfectly reproduces the
polynomials e (k = 0, ... , N - 1) from a nearby set of N sample points. (We generally restrict s to the
values 1s 5 1/2 (N odd) and 0 • s • 1, (N even).) This is the well-known Lagrange interpolator,
which fits a unique (N - 1)-order polynomial to N points. Notice, however, that the Lagrangian
polynomial so constructed is valid only on the central unit interval defined by the N sample points used
to interpolate. As soon as the next unit interval is considered, a new sample point enters the finite sum
in Eq. (48) and an old one leaves, so that the interpolated function A assumes the value of a new
Lagrangian polynomial. This means that f, as well as its derivatives, can be discontinuous, a fact
reflected in the Lagrangian kernels, 4)4 LF-1 is just NN, which has discontinuities at x = ± 1/2. L-2
is identical to LIN, which has derivative discontinuities at x = 0, ±1. LF-3 has discontinuities at
x = 0, ± 1/2, and ±3/2, and LF-4 has derivative discontinuities at x = 0, ± 1, and ±2.

Figure 6 illustrates these kernels for N = I through 4. The discontinuities at half-integers that appear
in most interpolators with N odd usually make performance improvement marginal as N- N + 1 with
N even. The remainder of this report concentrates on comparisons with N even.

For positive arguments, the symmetric Lagrangian kernel is

fi (j- IFri

N -I )
[-?-1)N rN + (9
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negative.

Figure 7 compares the error factors (Eq. (41)) for LF interpolators to that of SINC at a standard shift
s = .25. (Notice that the SINC has finite support in frequency space, making Eq. (37) rather than Eq.
(40) more convenient for computing the plotted error.) Although ek2(v) can be made flatter at v = 0 by
using higher order interpolators, it becomes large beyond the Nyquist frequency. In the limit N - * ,
LF-N approaches the "ideal" SINC interpolator. But clearly, the SINC is ideal only inband; for image
energy beyond v = 1/2, the polynomial interpolators are superior.

7. OPTIMAL INTERPOLATORS

If the form of the image power spectrum is known, the results of Section 4 can be used to find the
N-point interpolators that minimize the total squared error. For example, for a constant spectrum on
v e [-1/2, 1/2], the a-integration from Eq. (34) can be calculated explicitly by using Eq. (41). The result
is

i' = 1 - E r(n + s) sinc (n + s) + E sinc (m) r r(n + m + st)r(n + s)
13 im n

(50)

= 1 - E r(n + s) sinc (n + s) + r2 (n + m + s),
n 1

because sinc (m) = o. The sums in Eq. (50) are finite because r(x) is zero for Ix I > N12.
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With the N tap weights rez + s) treated as independent variables, 4 can be minimized by
differentiation of Eq. (50). This leads to the solutions:

r(n + s) = sinc (n + s) In + sI S N2.2 (5 1)

Thus, SINC-N, the truncated sinc interpolator, which is much eschewed in the literature (Ref. 5, p.
35) because of the Gibbs' phenomenon in its Fourier transform, is in fact the optimal N-point interpolator
for a flat inband image spectrum. Figure 8 plots the error factors for SINC-2,4,6. For a constant image
spectrum, these can also be interpreted as the error spectra. Notice that the truncated SINCs reproduce
certain frequencies almost perfectly. That is, the error plunges to near zero at certain frequencies for all
shifts. This means that the continuous function f that results from interpolating from any set of sampled
values of a sinusoid with one of these frequencies is nearly a copy of that sinusoid.

The oscillations in the interpolator transform that correspond to these dips in the error factor are
often seen as undesirable. Figure 9 shows the result of applying a Hann window to SINC-6, which is a
standard technique for reducing sidelobe oscillations. This windowing is just the multiplication of the
kernel by a raised cosine to taper its edges and remove Gibbs' overshoot in the transform 1131. The figure
shows the effect on the error factor. It also is smoother after windowing, which effects a trade in
excellent reproduction of certain frequencies for a more uniform performance.
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Figures 8 and 9 contain instances of a general problem with truncated kernels-imperfect dc
response. This is often an undesirable feature that is remedied by renormalizing the kernel. For SINC-N,
at any given shift s the replacement

sine (n + s) * sinc (n + s)

[ES]

1D sinc (m + s)
M.[_ N-I]

achieves the desired effect. Figure 10 shows the errors for N = 6 renormalized SINCs. They should be
compared with Fig. 8(c). The lowest frequency local minimum has been shifted to dc; the second
minimum has been shifted to the right; and the third's location is almost unchanged. The latter two
minima are now also somewhat shift dependent, meaning that no longer is a continuous sinusoid at these
frequencies especially well reproduced.

1Q2

a:0

(9U-
1

af
a:

10- 6U[L,
0.0 0.2 0.4 0.6 0.8

FREQUENCY (CYCLES/SAMPLE)
2.0

Fig. 10 - Effect of renormalizing SINC-6 to have zero de error

Figures 8 through 10 show the ease with which the performance of common modifications of
SINC-N, or of any other interpolator, can be predicted by using the formula in Eq. (41). Moreover, Eq.
(34) has also been used to show that SINC-N is the minimum squared-error N-point interpolator for a flat
Nyquist-sampled spectrum.

21
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More generally, the minimum squared-error N-point interpolator can be derived, in principle,
whenever LW) jl2 is known up to an overall scale factor. Combining Eqs. (41) with (34) results in

Jt _ w _ wS. i~ . 3\ f S}| X tm) rtn + m + S~rkn + s), p
n in n

where

R(x) = COs (xW) Ip4&) 12 d. (54)

Minimizing Eq. (53) with respect to the independent variables rdn + s) results in an equation for the
optimal N-point kernel

R(n * s) = r + s - m)R(m), (55)

valid for those n for which r(n + s) in Eq, (53) is nonzero, i.e., for the N values of
: [-(N - 1)12] ,. f(N - 1)21].

A comparison of Eq. (55) with Eq. (1) shows that the former is equivalent to the requirement that
r serve as a perfect interpolator for the function R(x) for x E [-N12, N121, i.e., over the same support

.. A_1- -,-I I iA; {Et A - U _ IL A_-AjnAan*- A A ._ as 
JUL Wflll.f6l 1$.J 1 GIsUWVU tU U4g LLUJILVIU *. fl~jUOLLUII 1I~JJ 9U1 1I. %.I,, U1 IL1U5

a stochastic mean-squared-error. There the discrete sample values, here called fin), were assumed to
represent an underlying stationary, ergodic, stochastic process. The fluction R(x) was the autocorrelation
function of that process, for which Eq. (54) is also valid if jfv)j2 is interpreted as the power spectrum
of a stochastic process with the above properties. Equation (55) has now been shown to hold even when
theAn) result from the sampling of a deterministic function, if R(x) is interpreted according to Eq. (54)
instead of more restrictively, as the autocorrelation function of a random process,

Because Rtm) is symmetric, Eq. (55) represents a particular class of matrix equations called Toeplitz.
General procedures [14,15] have been developed to solve these iteratively. Thus, in principle, r(s + i)

can always be found as a function of 2N numbers, R(m) and Rtn + s), with m = 0, ... , N - 1 and n
= - (N - 1)/21, ... , I - (- 1)121

If these quantities are known, then Eq. (55) can be used to find the optimal rin + s). Notice that all
the s-dependence in Eq. (55) is implicit, i.e., in the arguments of functions. This means that good
interpolation may be possible without knowledge of s, as long as estimates of R~m) and R(n + s) are
available. For example, if two images shifted by an unknown s are to be compared after one has been
resampled, then R might be interpreted as an autocorrelation function, and periodogramns [16] could be
constructed from either image to estimate RWn), and from both together to estimate R(n + s). This
technique introduces errors because of imprecision in the estimate of R. However, it completely
eliminates errors from a prior step that we have ignored: estimation of the shift s. The competition
between these errors depends on the performance of registration methods and is not studied here.

Lorentzian Spectrum

Because the optimization equations for the stochastic problem are identical in iorm to Eq. (55), prior
results can be applied immediately to the present problem. One particularly surprising result occurs for
a Lorentzian profile, that is a power spectrum of the form

1t7012 I (56)
E2 (tŽ0)
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The transform of Eq. (56) is

R(x) - e-2lxle, (57)

which can correspond to the autocorrelation function of a first-order autoregressive [AR(1)] stochastic
process. Equation (56) is also a reasonable model for much natural imagery, independently of any
probabilistic assumptions.

For the model in Eq. (56), the optimal N-point (N 2 2) solution can be verified by substitution into
Eq. (55) as:

r(S) = pS-i _-s

p -p

-s sr(S -1) ~~~~~~~~~~~~(58)
p -p

otherwise, r(s + n) = 0,

with p e and 0 9 s £ 1,

which has support 2. That is, the optimal N-point solution is in fact a two-point interpolator! This curious
result, first shown [2] for stochastic signals, also implies that for a i/i2 power spectrum (the limit of Eq.
(56) as e - 0), the optimal N-point interpolator is just linear interpolation, which can be verified as the
limiting form of Eq. (58).

Here we consider the general power-law spectrum

L(A) 17 .I (59)
vp

Figure 11(a) shows ev2(v)1I2, which is the power spectrum of the error, that is, of the difference
between interpolated image and true value, for LIN, LF-4, and standard (smooth) Cubic Convolution
(CC), for a p = 2 power spectrum, and at a shift of .25 samples. Although LIN is only a two-point
interpolator, it has been claimed to be optimal forp = 2. That is, according to Eq. (34), the integral of
the error spectrum is smaller for LIN than for any other interpolator, regardless of the value of N. Figure
11 shows how LIN accomplishes this feat. When considered only out to the Nyquist frequency (a = 1/2),
LF-4 and CC are actually superior to LIN (by an rms factor of approximately 1.38). This remains true
out to twice the Nyquist, over which frequency range CC and LF-4 are each a few percent better than
LIN. It is only at higher frequencies (Fig. 1 1(b)) that LIN recovers from its inband inferiority. If Eq. (59)
with p = 2 is assumed to hold for all frequencies, then LIN is a few percent better than either LF-4 or
CC.

Figure 1 1(b) explains a counterintuitive result implied by the fact that LIN is optimal forp = 2. For
those signals, including imagery, for which thep = 2 power spectrum is a reasonable model, experience
shows that many polynomial interpolators outperform LIN. The reason this does not contradict the
optimality claim for LIN is that the spectrum for which LIN produces the minimum error is usually an
invalid model beyond the Nyquist frequency, when applied to imagery.

23



ALAN SCHAUM

0.2 0.4 0.6 0.8
FREQUENCY (CYCLES/SAMPLE)

10O

(a)

0 2 4 6
FREQUENCY (CYCLES/SAMFPL)

(b)

Figs 11 - (a) Error spectra for LIN, LF-4, and cubic convolution (CC) for
lV2 image spectrum; (b) same as (a), but including higher frequencies

8

24

4

2

zi:

U9

a:
C:
a:Li

oC

100

cc
i-

(9

LU

Cl
a:
cc
-Uj



NRL REPORT 9356

A power-law spectrum is commonly used to characterize one-dimensional slices of imagery, with p
typically in the range I < p C 4. Equation (59) is often assumed to hold in a piecewise sense, possibly
with different values of p in different frequency ranges. Some low-frequency cutoff usually must be
chosen to keep the total image energy (variance) finite, and commonly a = 1/2 (Nyquist) is chosen as
a practical high-frequency cutoff. Thep that is appropriate at low frequencies is often considered the most
important because image energy tends to concentrate there. However, after interpolation, especially with
polynomial kernels, the residual energy in a difference image often resides at higher frequencies, as
exemplified in Fig. 11. Therefore, for extreme accuracy in interpolation, the high-frequency spectral
content caJ be UllJotf L4UL ilU.

p = 4 Power Law Spectrum

As a second anolication of Eq. (55), we consider the case p = 4 in Eq. (59), which appears to be
the limiting power of low-frequency divergence in natural imagery [17J. For N 2, the solution to the
Toeplitz equations is

Ks' = R(O)R(s) - R(l)R(l - s)
R2(0) - R2(1)

RNO) - R2 (ls) (O < S 1 i). (60)

r(s - 1) R(0)R(s)
R2 (0) - R 2 (1)

Although the integral in Eq. (54) defining R for the power spectrum of Eq. (59) diverges at low a' for
p = 4, the power spectrum of the error e 2v) @(v) 1 is convergent at low frequency as long as

e(s) - V3 , with 5 > 0. AI1.

This condition is violated by NN and (usually) DFT interpolators, for which 6 =-1; but even for LIN,
the lowest nontrivial polynomial interpolator, 6 = 1. In practice, this means that the performance of NN
anu r i can be highly dependent on mhe low-frequency cuunoff tuhat must exiSt in tea uimagery.

The explicit calculations of the kernel in Eq. (60) need a convergence mechanism for R, and so we
solve instead for the power spectrum

V( )t V4 + 1 (62)

Then the limiting cnmz - A 0 will vivP. the n = 4 nnwer-lRw rsuilt Fnr Rn ({fi Rhr\ in Fn (MA Cnf

I1 --- a- - -- --- we0rta szo !-I\*
be evaluated in closed form:

R(x) - exp [I5exI1 [cos [ .x 1 + sin I¶I (63)

Then the minimum-error two-point interpolator for the power spectrum in Eq. (62) can be calculated
from Eq. (60) by using Eq. (63). In the limit f - 0, the solution (Eq. (60)) approaches linear, just as it
does in thep = 2 case.
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Similar calculations for p = 4 can be made for the four-point optimum. The Toeplitz solution for
the power spectrum Eq. (62) is quite complicated, but the limiting solution for c - 0 is simple:

r(s) = ± (1 - s)(5 + 4s - 5s2)

r(s + 1) = s(1 - s)(7 - 5s) (64)

r(c)=0 IxI >2

r(x) = r(-x) 'x.

Figure 12(a) shows the error factors at s .25 for three four-point interpolators, and Fig. 12(b)
shows the corresponding error spectra for a p 4 input spectrum. Beyond P = 1, the curves are naly
identical, unlike the corresponding p = 2 curves. Nevertheless, it is again evident that the best

interpolator (asmeasueby jU2 -depends on-the -ffequency- at--which -the p spectrum mightbe
truncated to match realistic image data.

Integration of the Fig. 12(b) curves shows that over all frequencies (av = + o), the optimal solution
(Eq. (64)) is only about 2 percent better than either LF-4 or CC; for Pa = 1/2, it is 8 percent and 9
percent better, respectively. The optimal is still superior for P, = 1/4, but for P, = .1, UF-4 produces
5.5 times less rms error than the (Pt = + oo) optimal. Evidently from Fig. 12(b), e4 () for the optimal
varies as P4 for small P, so that the error spectrum approaches a constant; for LF-4, eS (,v) varies as y8.

Gaussian Spectrum

One final class of power spectra is considered. A single point-like object or an assortment of such
'uta are Spailwily separat- buy severl timies Ute blur imposd uy- a ithU!il's oi coe spondz s tW a power
spectrum proportional to the square of the sensor transfer function. Often a good model of this function
is a Gaussian, and so our final example is

I(V'12 - e "202 (65)

This corresponds to a system point spread function of

p(X) - e -WI2t (66)

We consider three cases: a = 1, 1/2, and 1/3, measured in samples. The first case represents an
imaging system that samples at nearly the Nyquist rate; the third represents one that undersamples. For
example, a line of square detectors (Fig. 13(a)) used in a scanning imager with "matched opcicsw*
corresponds approximately to a = 1/3 sample in the cross-scan direction, and to a = 1 sample in the
in-scan if the continuous detector output is sampled at a rate of approximately three times per scan across
a detector. In this situation, a cross-scan sample corresponds to one detector width; an in-scan sample
corresponds to 1/3 of a detector width. Because the detectors are butted in the Fig. 13(a) example,
g- = 1/3 also corresponds to the effective sampling rate in either direction along a mosaic array of closely
spaced detectors (Fig. [3%b)) that image in a staring mode.

Optios in which the first zero of a centered point response fas at the detector edge.

-Icr
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Fig. 12 - (a) Errors for three four-point interpolators: the (1/A)-optimal, LF4, and CC;
(b) error spectrum for three four-point interpolators and a 1/i image spectrum
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First minimurm of optics blur.

Cross-scan sampling rate of
once/detector, corresponds to
Gaussian transfer function with
a approximately 1/3 sample.

Scanning direction, 3 samples per detector
corresponds to approximate Nyquist sampling
and Gaussian transfer function with a - J.

(a)

I ~~-1 I L

j-I I I ''1'1-''
Mosaic array of
detectors as used
in starinp sensor.

a is approximately
1/3 in either directior.

(b)

=:_ I 1 1_" T . _ __ _ A- - aive A r _. rIg. so -xi a;} LDUI tae w jass a si=sig sevui,
(1$ two-dimensional array for a staTing sensor

The solution of En. (55) using En. 54) with the spectrum of Eo M65) is tedious but
straightforward. For N = 2 the optimal kernel is

rX2 _ 1y1+4-l
rds) = 

I - 71
with y = e- ; ( S 5 1),

which is plotted in Fig. 14 for the three values of a. Like all kernels derived in this report, it is
symmetric. Figure 15 plots the analytically complicated N = 4 results. Figure 16 shows the image power
specra corresponding to the three values ot a; these spectra have been scaled so tha the total energies,
i.e., image variances, are identical. Figures 17 and 18 show the N = 2 and N = 4 error factors,
respectively, both for a shift of .25. Notice that for a = .33, the performance as N changes from 2 to
4 is small. The square roots of the integrals over the error spectra (Fig. 19) are proportional to the rms
errors, and the difference of these proves to be less than 1 percent. On the other hand, if the spectra are
truncated at the Nyquist frequency, the error reduction is 13 percent.
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Fig. 16 - Gaussian power spectra with identical total energies
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Fig. 17 - Error factors for two-point Gaussian-optimal kernels
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Fig. 18 - Error factors for four-point Gaussian-optimal kernels
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Fig. 19 - Error spectra for Gaussian-optiMal interpolators acting on Gaussian spectrum: - = .33

31

102

a:0

I-

0

hi
10

a:

1 0



ALAN SCHAUM

Increasing a, which is measured in samples, can be thought of as either raising the sampling rate or
compressing the spectrum toward dc, as shown in Fig. 16, because the unit used here to measure
frequency is always cycles/sample. For a = 5 samples (Fig. 20), the rms error is reduced by
approximately 16 percent as N changes from 2 to 4; for a = 1 (Fig. 21), it is smaller by a factor of 3.3.
The failure of the four-point method to greatly out perform the two-point for a = .33 reflects the
difficulty of designing an interpolator with a consistently small error factor over a wide range of
frequencies.

Our final comparison is among the various values of a for a given N. As noted above, the rms error
(fbr v1 = + co) is nearly the same for N = 2 and N = 4 when a = .33. Either case can, therefore, sme
as a common baseline. For N = 2, the nis error is reduced by a factor of 1.9 as a changes to .50, and
by another factor of 3.7 as a changes to 1.0. For N = 4, the corresponding reductions are 2.58 and 10.3,
respectively. Optimal interpolation achieves its greatest gains for narrowband spectra.

Hybrid Designs

Figures 11 and 12(b) demonstrate that polynomial interpolators may be guilty of overkill at low
frequencies. Optimal interpolators achieve superior performance by leaving some residual energy near
dc. Similar results are evident in the Gaussian error spectra of Figs. 20 and 21. On the other hand, if the
image spectrum actually ends short of the Nyquist frequency, then the vt = +co optimal kernels can
perform poorly because their domain of superior performance is often at high frequencies. Therefore)
both polynomial and v1 = + ±o optimal solutions have defects when applied to truncated spectra. This
problem could be remedied by solving Eqs. (55) and (54) for a spectrum truncated at the Nyquist limit.
Such solutions are quite complicated analytically.

An alternative approach uses Eq. (40) to define interpolators that sacrifice some of the low-frequency
performance that is present in LF-4, for example, for smaller high-frequency errors. The error factor for
LF-4 varies as v near do, but image power spectra seldom diverge as fast as l 4 . Therefore, the error
spectrum is usually of order greater than v, rapidly dying at dc.

By using Eq. (40), two degrees of design freedom in a four-point interpolator can be spent to set the
error factor to zero at, say, half the Nyquist frequency, v 1/4. The remaining two degrees of freedom
can be used to constrain to the value zero: (a) the error factor at dc, and (b) the first derivativeof the
complex error Ej(v) at de, Two degrees of freedom are required for the first step because two ghases of
a sinusoid may be present in an image for v = 114. The dc conditions (a) and (b) make (dId-vYe(v)1 10 =
0 for n = 0, ... , 3, just as for linear interpolation.

Figure 22 shows error spectra out to the Nyquist limit that result from applying three interpolators
to a 14P2 spectrum. All these may be regarded as four-point interpolators because, as was shown
previously, UN is actually the optimal N-point interpolator for a 1/iP spectrum when p = 2. Above
v = .2, benefits of the above hybrid design are evident.

Figure 23 shows another set of error spectra, now for a IhA image spectrum, in which the optimal
four-point p = 2 interpolator LIN has been replaced by the optimal four-point p = 4 interpolator (Eq.
(64)). Here the sacrifice in low-frequency performance required to construct the hybrid is severe. The
image power is too divergent near dc, and the hybrid solution is inferior.

Figure 24 shows the final hybrid example. The image spectrum is Gaussian with a- = .33, and the
p1 = +co optimal is compared with LF4 and the above hybrid. LF-4 overkills low frequencies, the
optimal achieves its largest relative gain beyond the Nyquist limit, and the hybrid is the best choice for
an image spectrum truncated at the Nyquist.
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Fig. 20 - Error spectra for Gaussian-optimal interpolators
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Fig. 22 - Error spectra for N = 4 interpolators, p = 2, shift .25
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Fig. 24 - Error spectra as in Fig. 23, but with a = .33 Gaussian input spectrum

Nulls in the error factor or its derivatives could be forced at other frequencies besides v = 1/4, or
even instead of a = 0. For higher NK larger numbers of such constraints can be imposed, all implemented
by setting Eq. (40) or its derivatives to zero at the selected frequencies and solving for the r(n + s). Such
choices are dictated in practice by a knowledge of the types of power spectra over which the interpolation
methods are to be applied.

8. BEYOND INTERPOLATION

The optimal interpolators described above for orders N = 2 and N = 4 usually reduce errors by
factors of less than two when compared to conventional interpolators of the same order. Larger reductions
are achievable by increasing N, and the above methods provide a means for designing such interpolators.
For example, the error factor for LF-10 was shown in Fig. 7, and Fig. 25 compares the error spectra
after using LF-2,-4,-10 on a li/is spectrum truncated at v = 1/2. LF-10 produces a smaller rms error than
LIN by a factor of 2.3. Reductions with increasing N generally occur because N equals Nd, the number
of design degrees of freedom for the interpolator. However, for certain applications, Nd can be increased
more effectively without increasing N.

In change detection, two digital images are often compared by subtraction after one has been overlaid
on the other, i.e., resnpled. br nu.aeys arz well cii;tpr1 tn this tarhnnuia The Mtan cfflnra orrnr A2

becomes a measure of residual clutter after subtraction.

The change to be detected may be an extensive one, such as a region of blood flow on an angiogram
or large-scale agricultural evolution as seen from space. It may be a local change, such as the motion of
a small object. The general goal is to combine the two images so that only such changes persist.

The N-point interpolators described above are actually digital filters operating on an image. To
implement change detection with interpolation, a second image is used, but only in the subtraction step.
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Fig. 25 - Error spectra for LF-2,4,4-10, and p = 3 spectru, shift 25

It can be thought of as a temptate for gauging interpolation accuracy. However, by digitly filtering both
images before subtraction, Nd can be increased to nearly 2N. This dual filtering introduces a new element
into the analysis, consisting of constraints on the individual filters to preserve the change ta is to be
detected. For example, for extensive changes, an appropriate constraint may be to require perfect de
response of each filter. For detection of small moving targets of known shape, the filters can be
constrained to conserve target energy or peak amplitude.

Figure 26 illustrates performance results for two examples of this dual difference filtering. These
should be compared to Fig. 25 (note the scale change). The dual LF-4 is the analog of the interpolating
LF-4. The constraint imposed on its single-image filters was preservation of dc, i.e., of local mean
values. The dual hybrid is analogous to the interpolating hybrid described above, with the important new
feature that errors at v = 1/2 are also perfectly suppressed, an impossibility with interpolation. This
particular dual hybrid was constrained to preserve the peak amplitude of a small Gaussian target
(corresponding to ao- I in the Section 7 analysis). The dual LF-4 and hybrid yield smaller rms errors
than even LEF-10 (Fig. 25) by factors of 5.9 and 12.1, respectively.

Because the second image is now also filtered before subtraction, the difference image is no longer
a measure of interpolation error. Dual filtering methods relinquish the goal of interpolation for the sake
of maximizing a signal-to-clutter ratio. These ideas are explored further in a companion paper (18).

9. SUMMARY

This report provides tools for evaluating and designing interpolation and resampling methods. It
begins by deriving a generalized version of Parseval's Theorem. The theorem has strong and weak forms,
depending on whether the image is over- or undersampled. An extension of the derivation produces a
second theorem that replaces the sampled image with an error image. Strong and weak versions of this
theorem are also proved, but now the strong version applies whenever the image-not the error image-is
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Fig. 26 -Error spectra for dual filtering methods

oversainoled. However, even for undersampled imagery, the weak version provides a valuable tool for
predicting interpolation errors in an average sense.

The proofs of these theorems lead to the derivation of a fundamental formula for interpolation error,
which is expressible as an error spectrum. This can be written as a product of the image power spectrum
and an error factor that depends only on the interpolation kernel. Forms for the error factor are derived
that are useful for interpolators that are of finite extent either in space or in frequency.

An equation for the minimum-squared-error interpolator is derived and solved for various model
image spectra: constant inband, Lorentzian, power law, and Gaussian. 'When image spectra are modelled
with analytic forms extending over infinite frequency range, the optimal solutions often result in residual
error spectra concentrated around the Nyquist limit. Such solutions are sometimes inferior to polynomial
methods when applied to Nyquist-truncated versions of the model spectra.

Methods are described for customizing the performance of an N-point interpolator when the precise
form of the image spectrum is unknown. Performance error can be made zero at selected frequencies,
the number of which is limited only by the order of the interpolator. Such hybrid methods can also be
riledoned hi kppn the errnr cm-Al in velertrld re-anncz nf the vnenrqrinm hu ronnenlr-rat~ingmanrle nprt-i nf theA

error factor into a small range, such as for LF-N, in which all zeros are collapsed to dc. The hybrids are
also valuable suboptimal methods when the form of the ideal interpolator is cumbersome, as often
happens with image power spectra that are truncated forms of analytic functions.
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Appendix

DERIVATION OF THE COMB TRANSFORM:

The fundamental theorem of Fourier series can be written as

A(v) r e 2 minpc v e [-1/2, 1/2] (Al)

where

Cn= |.i ,,izmni at .u. (A2'
-1/2

for any reasonably well-behaved function I [All. Therefore, formally defining

-2winr (A3)

Eqs. (Al) and (A2) can be combined into

70,1) = | k(v - qk()d-4. (A4)

Because Eq. (A4) holds for (rather) arbitrary J:
(a) k is by definition the Dirac delta function on the interval [-1/2, 1/2].

However, it is obvious from Eq. (A3) that:
(b) k is periodic with period one.

Tnopther (a\ and fli' mnian that Ir muict hb tha mum of displanac Aeita function. that 4

kv= 5(v - n). (A5)

The right-hand side of Eq. (A5) is the definition of the comb, so that Eq. (A3) becomes

E -26t = comb(v). (A6)

However, the left-hand side of Eq. (A6) is Just the Fourier transform of the sum of displaced delta
functions:

5 b(x - n) e comb(x). (A7)
a

That is, comb(v) and comb(x) are Fourier transform pairs, as claimed in Eq. (9). For an alternative proof
that treats delta functions as the limit of Gaussians, see Ref. A2.
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